Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
J Photochem Photobiol B ; 254: 112902, 2024 May.
Article in English | MEDLINE | ID: mdl-38569457

ABSTRACT

The effect of low artificial Ultraviolet (UV) on the DNA methylation remains controversial. This study addresses how differential photoperiods of UV radiation affect the biochemical and molecular behaviors of Cannabis indica cell suspension cultures. The cell suspensions were illuminated with the compact fluorescent lamps (CFL), emitting a combination of 10% UVB, 30% UVA, and the rest visible wavelengths for 0, 4, 8, and 16 h. The applied photoperiods influenced cell morphological characteristics. The 4 h photoperiod was the most effective treatment for improving biomass, growth index and cell viability percentage while these indices remained non-significant in the 16 h treatment. The methylation-sensitive amplified polymorphism (MASP) assay revealed that the UV radiation was epigenetically accompanied by DNA hypermethylation. The light-treated cells significantly displayed higher relative expression of the cannabidiolic| acid synthase (CBDAS) and delta9-tetrahydrocannabinolic acid synthase (THCAS) genes about 4-fold. The expression of the olivetolic acid cyclase (OAC) and olivetol synthase (OLS) genes exhibited an upward trend in response to the UV radiation. The light treatments also enhanced the proline content and protein concentration. The 4 h illumination was significantly capable of improving the cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC) concentrations, in contrast with 16 h. By increasing the illumination exposure time, the activity of the phenylalanine ammonia-lyase (PAL) enzyme linearly upregulated. The highest amounts of the phenylpropanoid derivatives were observed in the cells cultured under the radiation for 4 h. Taken collective, artificial UV radiation can induce DNA methylation modifications and impact biochemical and molecular differentiation in the cell suspensions in a photoperiod-dependent manner.


Subject(s)
Cannabinoids , Cannabis , Cannabis/genetics , Cannabis/chemistry , Cannabinoids/pharmacology , Dronabinol/pharmacology , DNA Methylation , Ultraviolet Rays , Cell Proliferation
2.
Mycologia ; 116(3): 370-380, 2024.
Article in English | MEDLINE | ID: mdl-38551373

ABSTRACT

This research investigated the antioxidant responses of Pleurotus florida at different concentrations of gas oil [0% (control), 2.5%, 5%, and 10% (v:v)] for 30 days. The activities of superoxide dismutase and catalase enzymes decreased in responses to the gas oil presence by an average of 83% and 49%, respectively. In contrast, the activities of the ascorbate peroxidase and glutathione peroxidase enzymes displayed an upward trend in the groups cultured in oil-contaminated media. The gas oil contaminant increased total phenol and flavonoid accumulation, reflecting the variation in secondary metabolism. According to the 1,2-diphenyl-2-picrylhydrazyl radical scavenging, the 2.5% gas oil treatment resulted in the highest antioxidant activity (48 µg mL-1). The highest scavenging activity of nitric oxide radicals (IC50 = 272 µg mL-1) was observed in the treatment with the highest gas oil concentration (10%). Also, this treatment showed an excellent ability to chelate Fe+2 ions (IC50 = 205 µg mL-1). The IC50 values of methanolic extract for nitric oxide scavenging activity and metal chelating ability were significantly reduced by increasing gas oil concentration in the treatments. With increasing the gas oil concentration, malondialdehyde content as a criterion measure of lipid peroxidation level showed significant reduction. These results show that P. florida is resistant to and a compatible mushroom with oil pollutants. Also, the activity of glutathione peroxidase and the ascorbate-glutathione cycle detoxify nitric oxide radicals and products of reactive oxygen species-induced lipid peroxidation in the gas oil treatments.


Subject(s)
Antioxidants , Pleurotus , Pleurotus/chemistry , Pleurotus/metabolism , Antioxidants/pharmacology , Antioxidants/chemistry , Superoxide Dismutase/metabolism , Nitric Oxide/metabolism , Glutathione Peroxidase/metabolism , Catalase/metabolism , Petroleum/metabolism , Flavonoids/pharmacology
3.
Environ Sci Pollut Res Int ; 31(11): 16485-16496, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38319425

ABSTRACT

The underlying mechanisms through which silicon oxide nanoparticles (SiNPs) can confer salinity resistance to plants are poorly understood. This study explored the efficacy of supplementing nutrient solution with SiNPs (20-30 nm; 10 mg kg-1 soil) to stimulate metabolism and alleviate the risks associated with salinity (0.73 g kg-1 soil) in basil seedlings. For this purpose, variations in photosynthetic indices, proline osmoprotectant, antioxidant markers, phenylpropanoid metabolism, and transcriptional behaviors of genes were investigated. SiNPs increased shoot fresh weight (38%) and mitigated the risk associated with the salinity stress by 14%. SiNPs alleviated the inhibitory effects of salinity on the total chlorophyll concentration by 15%. The highest increase (twofold) in proline content was recorded in the SiNP-treated seedlings grown under salinity. The nano-supplement enhanced the activity of enzymatic antioxidants, including peroxidase (2.5-fold) and catalase (4.7-fold). SiNPs induced the expression of gamma-cadinene synthase (CDS) and caffeic acid O-methyltransferase (COMT) genes by 6.5- and 18.3-fold, respectively. SiNPs upregulated the eugenol synthase (EGS1) and fenchol synthase (FES) genes by six- and nine-fold, respectively. Salinity transcriptionally downregulated the geraniol synthase (GES) gene, while this gene displayed an upward trend in response to SiNPs by eight-fold. The nano-supplement transcriptionally stimulated the R-linalool synthase (LIS) gene by 3.3-fold. The terpinolene synthase (TES) gene displayed a similar trend to that of the GES gene. The highest expression (25-fold) of the phenylalanine ammonia-lyase (PAL) gene was recorded in seedlings supplemented with SiNPs. The physiological and molecular assessments demonstrated that employing SiNPs is a sustainable strategy for improving plant primary/secondary metabolism and crop protection.


Subject(s)
Nanoparticles , Ocimum basilicum , Ocimum basilicum/metabolism , Secondary Metabolism , Crop Protection , Antioxidants/metabolism , Salt Stress , Seedlings , Proline/metabolism , Soil , Gene Expression
4.
Protoplasma ; 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38291258

ABSTRACT

Drought stress is one of the major limiting factors for the production of tomato in Iran. In this study, the efficiency of selenate and Se nanoparticle (SeNP) foliar application on tomato plants was assessed to vestigate mitigating the risk associated with water-deficit conditions. Tomato plants were treated with SeNPs at the concentrations of 0 and 4 mg L-1; after the third sprays, the plants were exposed to water-deficit conditions. The foliar spraying with SeNPs not only improved growth, yield, and developmental switch to the flowering phase but also noticeably mitigated the detrimental risk associated with the water-deficit conditions. Gene expression experiments showed a slight increase in expression of microRNA-172 (miR-172) in the SeNP-treated plants in normal irrigation, whereas miR-172 displayed a downregulation trend in response to drought stress. The bZIP transcription factor and CRTISO genes were upregulated following the SeNP and drought treatments. Drought stress significantly increased the H2O2 accumulation that is mitigated with SeNPs. The foliar spraying with Se or SeNPs shared a similar trend to alleviate the negative effect of drought stress on the membrane integrity. The applied supplements also conferred drought tolerance through noticeable improvements in the non-enzymatic (ascorbate and glutathione) and enzymatic (catalase and peroxidase) antioxidants. The SeNP-mediated improvement in drought stress tolerance correlated significantly with increases in the activity of phenylalanine ammonia-lyase, proline, non-protein thiols, and flavonoid concentrations. SeNPs also improved the fruit quality regarding K, Mg, Fe, and Se concentrations. It was concluded that foliar spraying with SeNPs could mitigate the detrimental risk associated with the water-deficit conditions.

5.
J Hazard Mater ; 465: 133163, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38064945

ABSTRACT

Arsenic (As) is a highly cytotoxic element impairing normal cellular functions, and its bioremediation has become one of the environmental concerns. This study explored the molecular and physiological responses of thyme (Thymus kotschyanus) seedlings to incorporating As (0 and 10 mgl-1) and methyl jasmonate (MJ; 0 and 10 µM) into the culture medium. The MJ treatment reinforced root system and mitigated the As cytotoxicity risk. MJ contributed to hypomethylation, a potential adaptation mechanism for conferring the As tolerance. Two cytochrome P450 monooxygenases, including CYP71D178 and CYP71D180 genes, were upregulated in response to As and MJ. The MJ treatment contributed to up-regulation in the γ-terpinene synthase (TPS) gene, a marker gene in the terpenoid metabolism. The As presence reduced photosynthetic pigments (chlorophylls and carotenoids), while the MJ utilization alleviated the As toxicity. The MJ supplementation increased proline accumulation and soluble phenols. The application of MJ declined the toxicity sign of As on the concentration of proteins. The activities of peroxidase, catalase, and phenylalanine ammonia-lyase (PAL) enzymes displayed an upward trend in response to As and MJ treatments. Taken collective, MJ can confer the As tolerance by triggering DNA hypomethylation, regulating CYPs, and stimulating primary and secondary metabolism, especially terpenoid.


Subject(s)
Arsenic , Cyclopentanes , Oxylipins , Thymus Plant , Thymus Plant/metabolism , Secondary Metabolism , Acetates/metabolism , Cytochrome P-450 Enzyme System/metabolism , Terpenes , DNA
6.
Protoplasma ; 261(2): 293-302, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37814140

ABSTRACT

This study aimed to investigate the effects of clinorotation induced by 2-D clinostat on the growth, tropane alkaloid production, gene expression, antioxidant capacity, and cellular defense responses in the callus tissue of Hyoscyamus niger. Callus induction was conducted by putting hypocotyl explants in the MS culture medium supplemented with 1 mgL-1 2,4-D and 1 mgL-1 BAP growth regulators. The sub-cultured calli were placed on a clinostat for 0, 3, 7, and 10 days (2.24 × 10-5 g on the edge of the callus ring). Clinorotation significantly increased callus fresh weight, dry weight, protein, carbohydrate, and proline contents compared to the control, and their maximum contents were obtained after 7 and 10 days. H2O2 level enhanced under clinorotation with a 76.3% rise after 10 days compared to control and positively affected the atropine (77.1%) and scopolamine (69.2%) productions. Hyoscyamine 6-beta hydroxylase and putrescine N-methyltransferase gene expression involved in the tropane alkaloid biosynthesis were upregulated markedly with 14.2 and 17.1-folds increase after 10 days of clinorotation, respectively. The expressions of jasmonic acid, mitogen-activated protein kinase, and ethylene-responsive element-binding transcription factor were upregulated, and the activity of peroxidase and catalase showed a 72.7 and 80% rise after 10 days. These findings suggest that microgravity can enhance callogenesis by stimulating the ROS level, which can impact the antioxidant enzymes, tropane alkaloid formation, and gene expression.


Subject(s)
Hyoscyamus , Hyoscyamus/genetics , Hyoscyamus/metabolism , Antioxidants/metabolism , Hydrogen Peroxide/metabolism , Rotation , Plant Roots/metabolism , Tropanes/metabolism , Tropanes/pharmacology , Gene Expression
7.
Heliyon ; 9(11): e22144, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38034643

ABSTRACT

Titanium dioxide nanoparticles (TiO2NPs) are widely used in agriculture in order to increase the yield and growth characteristics of plants. This study investigated the effects of TiO2NPs on photosynthetic pigments and several biochemical activities and antioxidant enzymes of the Vitex plant. Different concentrations of nanoparticles (0, 200, 400, 600 and 800 ppm) at five levels were sprayed on Vitex plants on the 30th day of the experiment. TiO2NPs at different concentrations had positive effects on root and shoot dry weight and a negative effect on leaf dry weight. The amount of chlorophyll increased with the concentration of TiO2NPs; however, the amount of chlorophyll b showed a decreasing trend while the total chlorophyll had a constant trend. The highest amount of soluble sugar was obtained in the treatment of 200 ppm nanoparticles. The application of TiO2NPs did not have any effect on the content of proline and soluble proteins of Vitex plant. The effects of foliar TiO2NPs, compared to the control, showed a significant increase in the activity of antioxidant enzymes. In general, TiO2NPs had a favorable effect on dry matter production and some antioxidant and biochemical properties of the Vitex plant.

8.
Plant Physiol Biochem ; 202: 107975, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37634333

ABSTRACT

Atropine is a well-known tropane alkaloid commonly employed in medicine class called anticholinergics. This study intends to address biochemical and molecular responses of Datura inoxia calluses to fortifying culture medium with carboxylic acid-functionalized multi-walled carbon nanotubes (COOH-MWCNTs). The application of MWCNTs influenced callogenesis performance and biomass in a dose-dependent manner. The MWCNT at 5 mgL-1 resulted in the highest biomass of calluses by 57%. While, MWCNTs at high concentrations were accompanied by cytotoxicity. On the other hand, MWCNTs at concentrations above 100 mgL-1 exhibited cytotoxicity, decreased callogenesis performance, and reduced Atropine biosynthesis. The MWCNTs increased the activity of phenylalanine ammonia-lyase (PAL) and catalase enzymes. The concentrations of proline and soluble phenols displayed upward trends in response to using MWCNTs. According to the HPLC assessment, enriching culture medium with MWCNTs at 5 mgL-1 elicited Atropine production in calluses by 64%. The quantitative PCR assessment referred to the upregulation in the transcription of the PAL gene. The expression of ornithine decarboxylase (ODC) and putrescine N-methyltransferase 1 (PMT) genes were also upregulated in calluses cultured in a medium supplemented with MWCNTs. Methylation Sensitive Amplification Polymorphism (MSAP) technique indicated that employing MWCNTs altered the DNA methylation profile, reflecting epigenetic modification. Overall, engineering plant cells with MWCNTs as a nano-elicitor can be suggested for large-scale synthesis of industrially-valuable secondary metabolites.


Subject(s)
Datura , Nanotubes, Carbon , DNA Methylation/genetics , Atropine/pharmacology , DNA , Carboxylic Acids , Cytosine
9.
Protoplasma ; 260(6): 1515-1525, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37233753

ABSTRACT

Few investigations have tested the practical use of cold plasma as a novel technology to meet the requirements in the plant cell and tissue culture field. To fill the knowledge gap, we intend to respond to the question of whether plasma priming influenced DNA ultrastructure and the production of atropine (a tropane alkaloid) in Datura inoxia. Calluses were treated with the corona discharge plasma at time durations ranging from 0 to 300 s. Significant increases (about 60%) in biomass were observed in the plasma-primed calluses. The plasma priming of calluses enhanced the accumulation of atropine about 2-fold. The plasma treatments increased proline concentrations and soluble phenols. The drastic increases in the activity of the phenylalanine ammonia-lyase (PAL) enzyme resulted from the applied treatments. Likewise, the plasma treatment of 180 s upregulated the expression of the PAL gene by 8-fold. Also, the expression of the ornithine decarboxylase (ODC) and tropinone reductase I (TR I) genes were stimulated by 4.3-fold and 3.2-fold, respectively, in response to the plasma treatment. The putrescine N-methyltransferase gene displayed a similar trend to that of TR I and ODC genes following the plasma priming. Methylation sensitive amplification polymorphism method was employed to explore the plasma-associated epigenetic changes in DNA ultrastructure. The molecular assessment referred to DNA hypomethylation, validating an epigenetic response. This biological assessment study validates the hypothesis that plasma priming of callus is an efficient, cost-effective, and eco-friendly tool to enhance callogenesis efficiency, elicit metabolism, affect gene regulation, and modify chromatin ultrastructure in D. inoxia.

10.
Physiol Mol Biol Plants ; 29(2): 195-208, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36875727

ABSTRACT

Wheat (Triticum aestivum) is one of the most important crops in the world. This investigation was attempted to evaluate the transcriptional responses of aquaporins (AQPs) to the mycorrhizal inoculation and/or water deficit conditions in wheat to clarify how the arbuscular mycorrhizal symbiosis can contribute to the modulation of water homeostasis. The wheat seedlings were subjected to the water deficiency, and mycorrhizal inoculation using arbuscular fungus Funneliformis mosseae and Illumina RNA-Seq analyses confirmed that aquaporins expressed differentially in response to both the irrigation levels and mycorrhizal colonization. Results of this study showed that only 13% of the studied AQPs were responsive to water deficit with a tiny fraction (3%) being up-regulated. Mycorrhizal inoculation had a greater impact on the expression of AQPs with ca. 26% being responsive, ca. 4% of which were up-regulated. The samples with arbuscular mycorrhizal inoculation yielded more root and stem biomass. Water deficit and mycorrhizal inoculation caused different AQPs to be up-regulated. The effect of mycorrhizal inoculation on the expression of AQPs was intensified by applying water deficiency with 32% of studied AQPs being responsive, 6% of which up-regulated. We also found that the overexpression of three genes TaNIP1-10, TaNIP3-3, and TaNIP3-4 was chiefly triggered by mycorrhizal inoculation. Our results show that water deficit has a lower impact on the expression of aquaporins compared to what the arbuscular mycorrhizal inoculation has; water deficit and arbuscular mycorrhizal inoculation mainly cause the down-regulation of the aquaporins, and water deficit and the arbuscular inoculation have synergetic effects. These findings could improve our knowledge of how arbuscular mycorrhizal symbiosis can contribute to the modulation of water homeostasis. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01285-w.

11.
Protoplasma ; 260(3): 839-851, 2023 May.
Article in English | MEDLINE | ID: mdl-36318315

ABSTRACT

Limited studies have been conducted on the role of microRNAs (miRs) and transcription factors in regulating plant cell responses to nanoparticles. This study attempted to address whether the foliar application of zinc oxide nanoparticles (ZnONPs; 0, 10, 25, and 50 mgL-1) can affect miRs, gene expression, and wheat grain quality. The seedlings were sprayed with ZnONPs (0, 10, 25, and 50 mgL-1) or bulk counterpart (BZnO) five times at 72 h intervals. The application of ZnONPs at 10 mgL-1 increased the number of spikelets and seed weight, while the nano-supplement at 50 mgL-1 was accompanied by severe restriction on developing spikes and grains. ZnONPs, in a dose-dependent manner, transcriptionally influenced miR156 and miR171. The expression of miR171 showed a similar trend to that of miR156. The ZnONPs at optimum concentration upregulated the NAM transcription factor and sucrose transporter (SUT) at transcriptional levels. However, the transcription of both NAM and SUT genes displayed a downward trend in response to the toxic dose of ZnONPs (50 mgL-1). Utilization of ZnONPs increased proline and total soluble phenolic content. Monitoring the accumulation of carbohydrates, including fructan, glucose, fructose, and sucrose, revealed that ZnONPs at 10 mgL-1 modified the source/sink communication and nutrient remobilization. The molecular and physiological data revealed that the expression of miR156 and miR171 is tightly linked to seed grain development, remobilization of carbohydrates, and genes involved in nutrient transportation. This study establishes a novel strategy for obtaining higher yields in crops. This biological risk assessment investigation also displays the potential hazard of applying ZnONPs at the flowering developmental phase.


Subject(s)
MicroRNAs , Zinc Oxide , Carbohydrates , Edible Grain , MicroRNAs/metabolism , Seeds , Sucrose/metabolism , Triticum/metabolism , Zinc Oxide/metabolism , Metal Nanoparticles , Repressor Proteins/metabolism , Plant Proteins/metabolism
12.
Protoplasma ; 260(1): 159-170, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35503387

ABSTRACT

The current decade has witnessed notable advancement towards the utilization of non-thermal (cold) plasma in multidisciplinary fields such as plant sciences. This study intends to validate whether cold plasma contributes to improving callogenesis performance and eliciting the production of cannabinoids in cannabis. The cannabis-derived calli were treated with plasma at different exposure times, including 0, 60, 120, and 180 s. The plasma priming improved the callogenesis performance and callus biomass by an average of 46.6%. The molecular assessment (MSAP method) validated how the plasma priming is epigenetically associated with variation in DNA methylome in the cannabis calli. The cold plasma treatments transcriptionally upregulated the expression of WRKY1 and ERF1B transcription factors by averages of 3.5- and 3.8-fold. The plasma treatment also stimulated the transcription of OLS, OAC, CBGAS, CBDAS, and THCAS genes involved in the biosynthesis of cannabinoids. The HPLC assessment proved the high potency of cold plasma to enhance the synthesis of cannabinoids, including Cannabigerol (CBG), Cannabidiol (CBD), and cannabinol (CBN). The plasma-primed calli contained higher concentrations of proteins (56%), proline (38%), and soluble phenols (40%). The activities of peroxidase and catalase enzymes showed a similar upward trend in response to the plasma. The profound increase in the concentrations of soluble sugars resulted from the plasma treatments. The plasma priming of calli contributed to the significant upregulation in the activity of the phenylalanine ammonia-lyase enzyme. This biological assessment study validates the high potency of plasma priming to elicit the biosynthesis of cannabinoids in cannabis calli.


Subject(s)
Cannabidiol , Cannabinoids , Cannabis , Plasma Gases , Epigenome , Transcription Factors/genetics , Cannabis/genetics , Cannabinol
13.
Plant Physiol Biochem ; 186: 157-168, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35849945

ABSTRACT

In vitro plant culture paves the way for meeting the industrial demand of pharmaceutically valuable secondary metabolites. This study intends to monitor how callus cells of Cannabis indica respond to the simulated microgravity (clinorotation; a Man-made technology). Callus initiation resulted from the culture of the leaf explant in a medium supplemented with kinetin (0.5 mgL-1) and 2, 4-D (2 mgL-1). Calli were treated with microgravity at three exposure times (0, 3, and 5 days). The microgravity treatments increased callus biomass about 2.5-fold. The clinorotation treatments transcriptionally induced the olivetolic acid cyclase (OAC) and olivetol synthase (OLS) genes about 6.2-fold. The tetrahydrocannabinolic acid synthase (THCAS) and cannabidiolic acid synthase (CBDAS) genes displayed a similar upward trend in response to microgravity. The applied treatments also stimulated the expression of the ethylene-responsive element-binding proteins (ERF1B) and WRKY1 transcription factors by an average of 7.6-fold. Moreover, the simulated microgravity triggered epigenetic modification in the DNA methylation profile. The HPLC-based assessment validated the high efficacy of the clinorotation treatments to increase the concentration of cannabinoids, including Cannabigerol (CBG) and Cannabidiol (CBD). However, the clinorotated calli contained a lower concentration of Tetrahydrocannabinol (THC) than the control group. The microgravity treatments increased concentrations of proline (79%), soluble sugars (61.3%), and proteins (21.4%) in calli. The biochemical assessment revealed that the clinorotation treatments slightly increased H2O2 concentration. The upregulation in the activities of peroxidase, catalase, and phenylalanine ammonia-lyase enzymes resulted from the microgravity treatments. Both HPLC and molecular assessments validated the significant efficacy of microgravity to enhance the production of cannabinoids.


Subject(s)
Cannabinoids , Cannabis , Weightlessness , Cannabis/chemistry , Cannabis/genetics , Dronabinol , Humans , Hydrogen Peroxide
14.
Ecotoxicology ; 31(4): 667-678, 2022 May.
Article in English | MEDLINE | ID: mdl-35298719

ABSTRACT

Cadmium (Cd) reduces plant growth by interfering with important plant metabolic processes at the physiological, biochemical, and molecular levels. Here, the effects of foliar application of zinc oxide nanoparticles (ZnO-NPs) on growth, antioxidant enzymes, glyoxalase system, and macro- and micro-elements levels of purslane (portulaca oleracea L.) under Cd toxicity were investigated. The results revealed that Cd toxicity increased the levels of hydrogen peroxide (H2O2), methylglyoxal (MG) and malondialdehyde (MDA), resulting in oxidative stress and the induction of electrolyte leakage (EL). Cd stress enhanced the leaf concentration of Cd and declined the leaf concentrations of macro- and micro-elements, resulting in a decrease in the content of photosynthetic pigments and plant growth. However, the foliar application of ZnO-NPs improved the activity of antioxidant enzymes and the glyoxalase system and, consequently, reduced the levels of H2O2, MG, MDA, and EL in Cd-stressed plants. ZnO-NPs decreased the leaf concentration of Cd and restored the leaf concentrations of macro- and micro-elements, thereby improving photosynthetic pigments and the growth of Cd-stressed purslane plants. In general, the results revealed that the foliar application of ZnO-NPs improved the growth of purslane plants under Cd phytotoxicity by maintaining nutrient homeostasis, improving the defense mechanisms (antioxidant enzymes and glyoxalase cycle), and increasing the accumulation of proline and glutathione. Therefore, the results of the present study strongly recommend that ZnO-NPs could be used effectively in the cultivation of plants in areas contaminated with toxic Cd metal.


Subject(s)
Nanoparticles , Portulaca , Soil Pollutants , Zinc Oxide , Antioxidants/metabolism , Cadmium/metabolism , Homeostasis , Hydrogen Peroxide/metabolism , Nanoparticles/chemistry , Nutrients , Portulaca/metabolism , Soil Pollutants/analysis , Zinc Oxide/chemistry , Zinc Oxide/toxicity
15.
J Photochem Photobiol B ; 229: 112413, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35220016

ABSTRACT

Impressive progress in developing light-emitting diodes (LEDs) offers a new dimension for meeting agricultural and biological expectations. The present study addresses how tomato (Solanum lycopersicum) seedlings respond to the different spectral qualities of LEDs (white, red, blue, and blue + red). The light treatments in a wavelength-dependent manner contributed to the variations in biomass accumulation, morphology, and organogenesis pattern. Light quality epigenetically contributed to the transcriptional regulation of the histone deacetylase (HDA3) gene. The expression of WRKY53 transcription factor and gamma-aminobutyric acid transaminase (GABA-TP1) genes displayed a similar upward trend in response to the blue wavelength. On the contrary, the sole red light downregulated the WRKY53 and GABA-TP1 genes. The blue irradiation was associated with the upregulation in the glycolate oxidase (GLO2) and ribulose-1,5-bisphosphate carboxylase­oxygenase large subunit (rbcL) genes, while the red wavelength down-regulated the GLO2 and rbcL genes. Moreover, rbcL statistically correlated with GLO2, referring to the balanced regulation of photorespiration and the Calvin cycle. The blue wavelengths were more capable of improving the concentrations of photosynthetic pigments and proline. The seedlings grown under the white LEDs displayed the maximum activity of the catalase enzyme. The cultivation of tomato seedlings under the blue lights enhanced the activities of the superoxide dismutase and ascorbate peroxidase enzymes. The light treatments were associated with the variation in the nutritional status of K+ and Ca2+ in both leaves and roots. The presented findings and inferences support the potential contribution of WRKY53, HDA3, and GABA signaling in modulating plant responses to light quality.


Subject(s)
Solanum lycopersicum , Histone Deacetylases , Light , Solanum lycopersicum/genetics , Photosynthesis/radiation effects , Transaminases , Transcription Factors , gamma-Aminobutyric Acid
16.
Environ Sci Pollut Res Int ; 29(24): 35897-35907, 2022 May.
Article in English | MEDLINE | ID: mdl-35064506

ABSTRACT

Cold plasma (CP) application has increasing interest due to its environmental-friendly, high efficient, and low cost aspects to mitigate deletion effects of heavy metals on plants. A pot experiment was carried out to evaluate the CP application on yield, physiological, and fatty acid profile of wheat (Triticum aestivum L.) in a completely randomized design (CRD) with five replicates. Cadmium (Cd) was applied at four levels (0, 50, 100, and 150 µM), and CP were used on germinated seeds at three levels (0, 60, and 120 s) in a hydroponic system. The results showed CP alleviated the Cd accumulation in roots, shoots, and grains. The significant reduction of grain yield (GY) and thousand grain yield (TGY) was observed in plants exposed to 100 and 150 µM compared with the control plants; however, CP improved GY and TGY particularly at severe Cd stress. The minimum chlorophyll (Chl) and relative water content (RWC) were observed in plants exposed in 100 µM Cd and non-CP treatments. Proline increased by Cd stress but decreased with CP in most treatments. Unlike proline, methionine showed significant reduction under Cd stress. The fatty acid profile of wheat represented that severe Cd stress decreased monounsaturated fatty acid (MUFA) but increased polyunsaturated fatty acid (PUFA). Heat map (HM) showed that GY and methionine were the most sensitive traits under treatments of Cd and CP. Totally, we suggest the use of 120 s of CP to mitigate Cd stress on wheat plants.


Subject(s)
Plasma Gases , Soil Pollutants , Cadmium/analysis , Edible Grain/chemistry , Fatty Acids/analysis , Methionine , Proline/pharmacology , Soil/chemistry , Soil Pollutants/analysis , Triticum
17.
Environ Sci Pollut Res Int ; 29(23): 34725-34737, 2022 May.
Article in English | MEDLINE | ID: mdl-35041168

ABSTRACT

Arsenic (As) is known to be one of the most toxic metalloids for humans and plants; however, little is known about the use of silicon (Si) and titanium dioxide (TiO2) nanoparticles (NPs) in reducing As toxicity in rice (Oryza sativa L.). The experiment was conducted to examine the effects of Si-NPs (50 and 100 mg/L), TiO2-NPs (25 and 50 mg/L) and As (50 µM) on growth, photosynthetic pigments, antioxidant defense system, glyoxalase system, expression of Si/As transporters, and genes involved in As sequestration in rice under hydroponic conditions. The results revealed that Si- and TiO2-NPs by upregulating the activity of antioxidant enzymes and glyoxalase cycle reduced hydrogen peroxide, methylglyoxal, malondialdehyde, and electrolyte leakage, and thus protected the photosynthetic apparatus and improved plant growth under As stress. By increasing the expression of GSH1, PCS, and ABC1 genes, Si- and TiO2-NPs increased leaf and root accumulation of glutathione and phytochelatins and sequestered As in vacuoles, which protected plant cells from As toxicity. Si-NPs diminished As uptake and increased Si uptake in As-exposed rice plants by modulating the expression of Si/As transporters (Lsi1, Lsi2, and Lsi6). The results depicted that 100 mg/L Si-NPs treatment had the highest positive effect on plant growth and tolerance under As stress compared to other treatments. In general, Si- and TiO2-NPs augmented the growth of rice under As stress through different strategies, which can be used to design effective fertilizers to enhance the crop growth and yield in areas contaminated with toxic metals.


Subject(s)
Arsenic , Nanoparticles , Oryza , Antioxidants/metabolism , Arsenic/metabolism , Humans , Phytochelatins/metabolism , Silicon/metabolism , Silicon/pharmacology , Titanium
18.
Int J Stem Cells ; 15(2): 183-194, 2022 May 30.
Article in English | MEDLINE | ID: mdl-34711698

ABSTRACT

Background and Objectives: Retinal stem cells (RSCs) resided in ciliary epithelium have shown to possess a high capacity to self-renew and differentiate into retinal cells. RSCs could be induced to differentiate when they are exposed to stimuli like natural compounds and suitable contexts such as biomaterials. The aim of this study was to examine the effects of Retinol and alginate/gelatin-based scaffolds on differentiation potential of mesenchymal stem cells (MSCs) originated from mouse ciliary epithelium. Methods and Results: MSCs were extracted from mouse ciliary epithelium, and their identity was verified by detecting specific surface antigens. To provide a three-dimensional in vitro culture system, 2% alginate, 0.5% gelatin and the mixed alginate-gelatin hydrogels were fabricated and checked by SEM. Retinol treatment was performed on MSCs expanded on alginate/gelatin hydrogels and the survival rate and the ability of MSCs to differentiate were examined through measuring expression alterations of retina-specific genes by ICC and qPCR. The cell population isolated from ciliary epithelium contained more than 93.4% cells positive for MSC-specific marker CD105. Alginate/gelatin scaffolds showed to provide an acceptable viability (over 70%) for MSC cultures. Retinol treatment could induce a high expression of rhodopsin protein in MSCs expanded in alginate and alginate-gelatin mixtures. An elevated presentation of Nestin, RPE65 and Rhodopsin genes was detected in retinol-treated cultures expanded on alginate and alginate-gelatin scaffolds. Conclusions: The results presented here elucidate that retinol treatment of MSCs grown on alginate scaffolds would promote the mouse ciliary epithelium-derived MSCs to differentiate towards retinal neurons.

19.
Fungal Biol ; 125(9): 667-678, 2021 09.
Article in English | MEDLINE | ID: mdl-34420694

ABSTRACT

This study investigated the potential functions of Pleurotus florida (an edible mushroom) in the biodegradation of gas oil at concentrations of 0 (control), 2.5, 5, and 10% (V: V) for 30 days. The gas oil increased dry weight and protein concentration in all treatments (by an average of 19.5 and 108%, respectively). Moreover, the pH, surface tension (ST), and interfacial tension (IFT) were reduced by the mushroom supplementation. The lowest surface tension (31.9 mN m-1) and the highest biosurfactant production belonged to the 10% gas oil treatment (0.845 ± 0.03 mg mL-1). The results demonstrated that the adsorption isotherm agreed well with the Langmuir isotherm. The maximum Langmuir adsorption capacity was calculated at 0.743 mg g-1 wet biomass of P. florida. The fungal supplementation efficiently remedied the total petroleum hydrocarbons (TPHs) by an average of 55% after 30 days. Gas chromatography (GC) analysis revealed that P. florida effectively detoxified C13-C28 hydrocarbons, Pristane, and Phytane, implying its high mycoremediation function. The toxicity test showed that mycoremediation increased the germination by an average of 35.82% ± 8.89 after 30 days. Laccase activity increased significantly with increasing gas oil concentration in the treatments. The maximum laccase activity was obtained in the 10% gas oil treatment (142.25 ± 0.72 U L-1). The presence of pollutants was also associated with induction in the tyrosinase activity when compared to the control. These results underline the high mycoremediation capacity of P. florida through the involvement of biosurfactants, laccase, and tyrosinase.


Subject(s)
Biodegradation, Environmental , Petroleum , Pleurotus , Environmental Pollutants/metabolism , Environmental Pollutants/toxicity , Laccase/metabolism , Monophenol Monooxygenase/metabolism , Petroleum/metabolism , Petroleum/toxicity , Pleurotus/drug effects , Pleurotus/enzymology , Pleurotus/metabolism
20.
Int J Biol Macromol ; 189: 170-182, 2021 Oct 31.
Article in English | MEDLINE | ID: mdl-34425117

ABSTRACT

Nanotechnology paves the way for introducing nanoscale fertilizers, pesticides, and elicitors. This study intends to address the synthesis of chitosan/zinc oxide nanocomposite (CS-ZnONP) and its biological assessment in in-vitro conditions. The zinc oxide nanoparticles (ZnONPs) were successfully coated with the chitosan (CS) polymer through a cost-effective approach. Transmission electron microscopy and Fourier transform infrared spectroscopy assessments proved the surface capping of chitosan polymer on ZnONP. The nanocomposite was more capable of improving growth and biomass than the bare ZnONPs. The application of the nanocomposite increased the concentration of chlorophylls (51%), carotenoids (70%), proline (2-fold), and proteins (about 2-fold). The supplementation of culture medium with the nanomaterials upregulated enzymatic antioxidant biomarkers (catalase and peroxidase). The activity of the phenylalanine ammonia-lyase enzyme also displayed a similar significant upward trend in response to the nano-supplements. The CS-ZnONP treatment considerably enhanced the accumulation of alkaloids (60.5%) and soluble phenols (40%), implying stimulation in secondary metabolism. The micropropagation test revealed that the CS-ZnONP treatment improved the organogenesis performance. Overall, the nanocomposite can be considered a highly potent biocompatible elicitor.


Subject(s)
Capsicum/chemistry , Chitosan/chemical synthesis , Nanocomposites/chemistry , Tissue Culture Techniques , Zinc Oxide/chemistry , Chitosan/chemistry , Kinetics , Nanocomposites/ultrastructure , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...